A Purely Combinatorial Approach to Simultaneous Polynomial Recurrence modulo 1

نویسندگان

  • ERNIE CROOT
  • NEIL LYALL
  • ALEX RICE
چکیده

Using purely combinatorial means we obtain results on simultaneous Diophantine approximation modulo 1 for systems of polynomials with real coefficients and no constant term.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Purely Combinatorial Approach to Simultaneous Polynomial Recurrence modulo 1 Ernie Croot Neil Lyall

Using purely combinatorial means we obtain results on simultaneous Diophantine approximation modulo 1 for systems of polynomials with real coefficients and no constant term.

متن کامل

A Tool Kit for Finding Small Roots of Bivariate Polynomials over the Integers

We present a new and flexible formulation of Coppersmith’s method for finding small solutions of bivariate polynomials p(x, y) over the integers. Our approach allows to maximize the bound on the solutions of p(x, y) in a purely combinatorial way. We give various construction rules for different shapes of p(x, y)’s Newton polygon. Our method has several applications. Most interestingly, we reduc...

متن کامل

A Quantitative Result on Diophantine Approximation for Intersective Polynomials

In this short note, we closely follow the approach of Green and Tao to extend the best known bound for recurrence modulo 1 from squares to the largest possible class of polynomials. The paper concludes with a brief discussion of a consequence of this result for polynomial structures in sumsets and limitations of the method.

متن کامل

Automated Discovery and Proof of Congruence Theorems for Partial Sums of Combinatorial Sequences

Many combinatorial sequences (for example, the Catalan and Motzkin numbers) may be expressed as the constant term of P (x)kQ(x), for some Laurent polynomials P (x) and Q(x) in the variable x with integer coefficients. Denoting such a sequence by ak, we obtain a general formula that determines the congruence class, modulo p, of the indefinite sum ∑rp−1 k=0 ak, for any prime p, and any positive i...

متن کامل

Combinatorial Nullstellensatz Modulo Prime Powers and the Parity Argument

We present new generalizations of Olson’s theorem and of a consequence of Alon’s Combinatorial Nullstellensatz. These enable us to extend some of their combinatorial applications with conditions modulo primes to conditions modulo prime powers. We analyze computational search problems corresponding to these kinds of combinatorial questions and we prove that the problem of finding degreeconstrain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013